基于Android studio3.6的JNI教程之ncnn人脸检测mtcnn功能

来自:网络
时间:2020-10-14
阅读:
免费资源网 - https://freexyz.cn/

代码链接:

https://github.com/watersink/mtcnn-linux-as

本代码可以在模拟器下进行跑。

环境:

windows10

Android studio 3.6

Sdk:android10 api 29

Ndk:r15c

Ncnn:20200226

Linux下的代码测试:

cd mtcnn_linux/build
cmake ..
make
./mtcnn

如果可以跑通,输出正确结果,证明mtcnn代码的准确性。

实际操作的时候,首先基于linux把c++代码调试通,方便后续的android调试。

Android进行c++调试时,使用__android_log_print函数进行log的输出,

开发:

(1)工程建立

新建android工程,选择Native C++,工程名为mtcnn,C++ Standard选择c++11

(2)资源文件res修改:

src/main/res/drawable下面随便复制一张带有人脸的照片,比如这里,复制了一张beauty.png

基于Android studio3.6的JNI教程之ncnn人脸检测mtcnn功能

src/main/res/layout下面新加main.xml。

基于Android studio3.6的JNI教程之ncnn人脸检测mtcnn功能

详细内容,

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent">
 
 <LinearLayout
  android:orientation="horizontal"
  android:layout_width="fill_parent"
  android:layout_height="wrap_content">
  <Button
   android:id="@+id/buttonImage"
   android:layout_width="wrap_content"
   android:layout_height="wrap_content"
   android:text="选图" />
  <Button
   android:id="@+id/buttonDetect"
   android:layout_width="wrap_content"
   android:layout_height="wrap_content"
   android:text="检测" />
 
 </LinearLayout>
 
 <TextView
  android:id="@+id/infoResult"
  android:layout_width="fill_parent"
  android:layout_height="wrap_content"
  android:text="" />
 <ImageView
  android:id="@+id/imageView"
  android:layout_width="fill_parent"
  android:layout_height="fill_parent"
  android:layout_weight="1" />
</LinearLayout>

(3)增加ncnn的lib文件

src/main下面新加jniLibs文件夹,加入对应平台的libncnn.a

基于Android studio3.6的JNI教程之ncnn人脸检测mtcnn功能

(4)增加网络模型文件assets

在main下面新建assets文件夹,里面放入mtcnn的3个网络结构的模型文件。

基于Android studio3.6的JNI教程之ncnn人脸检测mtcnn功能

(5)修改java文件,

修改src/main/java/com/example/mtcnn下面的MainActivity,

主要操作,包括在onCreate函数中对mtcnn这个类进行初始化。然后监听buttonImage,buttonDetect按钮,分别进行实现。

然后在该路径下增加MTCNN类,主要需要实现的方法如下,

package com.example.mtcnn;
 
public class MTCNN {
 //人脸检测模型导入
 public native boolean FaceDetectionModelInit(byte[] det1_param, byte[] det1_bin, byte[] det2_param,byte[] det2_bin,byte[] det3_param,byte[] det3_bin);
 //人脸检测
 public native int[] FaceDetect(byte[] imageDate, int imageWidth , int imageHeight, int imageChannel);
 
 public native int[] MaxFaceDetect(byte[] imageDate, int imageWidth , int imageHeight, int imageChannel);
 //人脸检测模型反初始化
 public native boolean FaceDetectionModelUnInit();
 //检测的最小人脸设置
 public native boolean SetMinFaceSize(int minSize);
 //线程设置
 public native boolean SetThreadsNumber(int threadsNumber);
 //循环测试次数
 public native boolean SetTimeCount(int timeCount);
 static {
  System.loadLibrary("mtcnn");
 }
}

(6)修改cpp文件,

首先将ncnn的include文件夹包含进来。

将模型的3个id.h文件包含进来,det1.id.h,det2.id.h,det3.id.h

mtcnn_jni.cpp负责对人脸检测的几个native方法进行实现。

mtcnn.h,mtcnn.cpp分别定义了一个MTCNN类,然后进行了相关方法的实现。

基于Android studio3.6的JNI教程之ncnn人脸检测mtcnn功能

需要注意,

这里读取的模型文件是通过二进制的方式读取的assets下面的模型。所以模型文件一定要首先进行加密处理(ncnn2mem)。

然后ncnn读取加密后文件和未加密文件是有一些区别的。主要包含2个地方。

第一个区别就是导入模型的区别,详细的用法看下图。

基于Android studio3.6的JNI教程之ncnn人脸检测mtcnn功能

未加密的:

load_param
load_model

已经加密的:

load_param_bin
load_model

如果使用load_param,load_model加载已经加密的文件,返回值为读取的字节数

基于Android studio3.6的JNI教程之ncnn人脸检测mtcnn功能

其余情况下,正常加载模型会返回0,错误返回其他值。

第二个区别就是,就是模型读取输入节点和输出节点的区别,

未加密的:

ex.input("data", in);
ncnn::Mat score_, location_;
ex.extract("prob1", score_);
ex.extract("conv4-2", location_);

已经加密的:

ex.input(det1_param_id::BLOB_data, in);
ncnn::Mat score_, location_;
ex.extract(det1_param_id::BLOB_prob1, score_);
ex.extract(det1_param_id::BLOB_conv4_2, location_);

(7)修改cpp下面的CMakeLists,增加ncnnlib的引用。

cmake_minimum_required(VERSION 3.4.1)
 
#include头文件目录
include_directories(include)
#source directory源文件目录
file(GLOB MTCNN_SRC *.h
     *.cpp)
set(MTCNN_COMPILE_CODE ${MTCNN_SRC})
#添加ncnn库
add_library(libncnn STATIC IMPORTED )
set_target_properties(libncnn
 PROPERTIES IMPORTED_LOCATION
  ${CMAKE_SOURCE_DIR}/../jniLibs/${ANDROID_ABI}/libncnn.a)
#编译为动态库
add_library(mtcnn SHARED ${MTCNN_COMPILE_CODE})
#添加工程所依赖的库
find_library( log-lib log )
target_link_libraries( mtcnn
      libncnn
      android
      jnigraphics
      z
      ${log-lib} )

(8)修改app/build.gradle下, defaultConfig里面加入下面的代码,

externalNativeBuild {
   cmake {
    arguments "-DANDROID_TOOLCHAIN=clang"
    cFlags "-fopenmp -O2 -fvisibility=hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math "
    cppFlags "-fopenmp -O2 -fvisibility=hidden -fvisibility-inlines-hidden -fomit-frame-pointer -fstrict-aliasing -ffunction-sections -fdata-sections -ffast-math "
    arguments "-DANDROID_STL=c++_shared", "-DANDROID_CPP_FEATURES=rtti exceptions"
    cppFlags ""
    cppFlags "-std=c++11"
    cppFlags "-frtti"
    cppFlags "-fexceptions"
   }
  }
  ndk {
   abiFilters 'armeabi-v7a'// , 'arm64-v8a' //,'x86', 'x86_64', 'armeabi'
   stl "gnustl_static"
  }

最终结果:

基于Android studio3.6的JNI教程之ncnn人脸检测mtcnn功能

 总结

免费资源网 - https://freexyz.cn/
返回顶部
顶部