TensorFlow的reshape操作 tf.reshape的实现

来自:互联网
时间:2020-05-26
阅读:
免费资源网 - https://freexyz.cn/

初学tensorflow,如果写的不对的,请更正,谢谢!

tf.reshape(tensor, shape, name=None)

函数的作用是将tensor变换为参数shape的形式。

其中shape为一个列表形式,特殊的一点是列表中可以存在-1。-1代表的含义是不用我们自己指定这一维的大小,函数会自动计算,但列表中只能存在一个-1。(当然如果存在多个-1,就是一个存在多解的方程了)

好了我想说的重点还有一个就是根据shape如何变换矩阵。其实简单的想就是,

reshape(t, shape) => reshape(t, [-1]) => reshape(t, shape)

首先将矩阵t变为一维矩阵,然后再对矩阵的形式更改就可以了。

官方的例子:

# tensor 't' is [1, 2, 3, 4, 5, 6, 7, 8, 9]
# tensor 't' has shape [9]
reshape(t, [3, 3]) ==> [[1, 2, 3],
            [4, 5, 6],
            [7, 8, 9]]

# tensor 't' is [[[1, 1], [2, 2]],
#        [[3, 3], [4, 4]]]
# tensor 't' has shape [2, 2, 2]
reshape(t, [2, 4]) ==> [[1, 1, 2, 2],
            [3, 3, 4, 4]]

# tensor 't' is [[[1, 1, 1],
#         [2, 2, 2]],
#        [[3, 3, 3],
#         [4, 4, 4]],
#        [[5, 5, 5],
#         [6, 6, 6]]]
# tensor 't' has shape [3, 2, 3]
# pass '[-1]' to flatten 't'
reshape(t, [-1]) ==> [1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4, 5, 5, 5, 6, 6, 6]

# -1 can also be used to infer the shape

# -1 is inferred to be 9:
reshape(t, [2, -1]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3],
             [4, 4, 4, 5, 5, 5, 6, 6, 6]]
# -1 is inferred to be 2:
reshape(t, [-1, 9]) ==> [[1, 1, 1, 2, 2, 2, 3, 3, 3],
             [4, 4, 4, 5, 5, 5, 6, 6, 6]]
# -1 is inferred to be 3:
reshape(t, [ 2, -1, 3]) ==> [[[1, 1, 1],
               [2, 2, 2],
               [3, 3, 3]],
               [[4, 4, 4],
               [5, 5, 5],
               [6, 6, 6]]]

# tensor 't' is [7]
# shape `[]` reshapes to a scalar
reshape(t, []) ==> 7

在举几个例子或许就清楚了,有一个数组z,它的shape属性是(4, 4)

z = np.array([[1, 2, 3, 4],
     [5, 6, 7, 8],
     [9, 10, 11, 12],
     [13, 14, 15, 16]])
z.shape
(4, 4)

z.reshape(-1)

z.reshape(-1)
array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16])

z.reshape(-1, 1)
也就是说,先前我们不知道z的shape属性是多少,但是想让z变成只有一列,行数不知道多少,通过`z.reshape(-1,1)`,Numpy自动计算出有12行,新的数组shape属性为(16, 1),与原来的(4, 4)配套。

z.reshape(-1,1)
 array([[ 1],
    [ 2],
    [ 3],
    [ 4],
    [ 5],
    [ 6],
    [ 7],
    [ 8],
    [ 9],
    [10],
    [11],
    [12],
    [13],
    [14],
    [15],
    [16]])

z.reshape(-1, 2)

newshape等于-1,列数等于2,行数未知,reshape后的shape等于(8, 2)

 z.reshape(-1, 2)
 array([[ 1, 2],
    [ 3, 4],
    [ 5, 6],
    [ 7, 8],
    [ 9, 10],
    [11, 12],
    [13, 14],
    [15, 16]])

到此这篇关于TensorFlow的reshape操作 tf.reshape的实现的文章就介绍到这了,更多相关TensorFlow的reshape操作 tf.reshape内容请搜索以前的文章或继续浏览下面的相关文章希望大家以后多多支持!

免费资源网 - https://freexyz.cn/
返回顶部
顶部