更新:
感谢评论区提供的方案。
采用model.summary(),model.get_config()和for循环均可获得Keras的层名。
示例如下图
对于keras特定层的命名,只需在层内添加 name 即可
model.add(Activation('softmax',name='dense_1') ) # 注意 name 要放于函数内 #提取中间层 from keras.models import Model import keras layer_name = 'dense_1' #获取层的名称 intermediate_layer_model = Model(inputs=model.input, outputs=model.get_layer(layer_name).output)#创建的新模型 intermediate_output = intermediate_layer_model.predict(X_test) doc = open(r'C://Users//CCUT04//Desktop//1.txt','w') for i in intermediate_output: print(i) print(i , file = doc) doc.close()
补充知识:关于用keras提取NN中间layer输出
Build model... __________________________________________________________________________________________________ Layer (type) Output Shape Param # Connected to ================================================================================================== mAIn_input (InputLayer) (None, 89, 39) 0 __________________________________________________________________________________________________ cropping1d_1 (Cropping1D) (None, 85, 39) 0 main_input[0][0] __________________________________________________________________________________________________ cropping1d_2 (Cropping1D) (None, 85, 39) 0 main_input[0][0] __________________________________________________________________________________________________ cropping1d_3 (Cropping1D) (None, 85, 39) 0 main_input[0][0] __________________________________________________________________________________________________ cropping1d_4 (Cropping1D) (None, 85, 39) 0 main_input[0][0] __________________________________________________________________________________________________ cropping1d_5 (Cropping1D) (None, 85, 39) 0 main_input[0][0] __________________________________________________________________________________________________ concatenate_1 (Concatenate) (None, 85, 195) 0 cropping1d_1[0][0] cropping1d_2[0][0] cropping1d_3[0][0] cropping1d_4[0][0] cropping1d_5[0][0] __________________________________________________________________________________________________ fc1 (BatchNormalization) (None, 85, 195) 780 concatenate_1[0][0] __________________________________________________________________________________________________ fc2 (Bidirectional) (None, 85, 2048) 9994240 fc1[0][0] __________________________________________________________________________________________________ fc3 (BatchNormalization) (None, 85, 2048) 8192 fc2[0][0] __________________________________________________________________________________________________ global_average_pooling1d_1 (Glo (None, 2048) 0 fc3[0][0] __________________________________________________________________________________________________ main_output (Dense) (None, 2) 4098 global_average_pooling1d_1[0][0] ================================================================================================== Total params: 10,007,310 Trainable params: 10,002,824 Non-trainable params: 4,486 __________________________________________________________________________________________________
假设我网络层数是上面这个结构.
如果我想得到pooling的输出, keras上有两张方法。
intermediate_layer_model = Model(inputs=model.input,outputs=model.get_layer(str('global_average_pooling1d_1')).output) #model.summary() #model.get_layer(str('cropping1d_1')) intermediate_output = intermediate_layer_model.predict(data)
data是你的输入所用的数据....
from keras import backend as K get_11rd_layer_output = K.function([model.layers[0].input], [model.layers[10].output]) layer_output = get_11rd_layer_output([data])[0]
我这里第10层是Pooling层.
这两个代码的output是一样的..
一般我看人用的都是第二个...