篇幅较长,所以首先列举结果,也就是我们的目的
核心目的为探索特定场景对不同类型数据进行统一抽象,并达到足够高性能,也就是一份代码实现,对不同类型数据依然高性能
以下为结果,也就是我们的目的:
对1w行 csv 数据的string进行 RFC4180 csv标准进行解析,
string 类型 csv 应该比 StringReader 性能更高
甚至对比大家使用非常多的 csvhelper 不应该性能差太多
测试代码如下
[MemoryDiagnoser]
public class CsvTest
{
private const string testdata = """
a,b
1,2
3sss,3333
1,2
3sss,3333
1,2
/// 1w 行
""";
private CsvConfiguration config = new CsvConfiguration(CultureInfo.InvariantCulture)
{
Mode = CsvMode.RFC4180,
};
[Benchmark]
public void CsvHelper_Read()
{
using var sr = new StringReader(testdata);
using var csv = new CsvHelper.CsvReader(sr, config);
var records = new List<string[]>();
csv.Read();
csv.ReadHeader();
while (csv.Read())
{
var record = new string[csv.ColumnCount];
for (var i = 0; i < record.Length; i++)
{
record[i] = csv.GetField(i);
}
records.Add(record);
}
//var d = records.ToArray();
}
[Benchmark]
public void RuQu_Read_Csv_StringReader()
{
using var sr = new StringReader(testdata);
using var reader = new RuQu.Csv.CsvReader(sr, fristIsHeader: true);
var d = reader.ToArray();
}
[Benchmark]
public void RuQu_Read_Csv_String()
{
using var reader = new RuQu.Csv.CsvReader(testdata, fristIsHeader: true);
var d = reader.ToArray();
}
}
性能测试结果:
BenchmarkDotNet v0.13.12, Windows 11 (10.0.22631.3155/23H2/2023Update/SunValley3)
13th Gen Intel Core i9-13900KF, 1 CPU, 32 logical and 24 physical cores
.NET SDK 8.0.200
[Host] : .NET 8.0.2 (8.0.224.6711), X64 RyuJIT AVX2
DefaultJob : .NET 8.0.2 (8.0.224.6711), X64 RyuJIT AVX2
Method | Mean | Error | StdDev | Gen0 | Gen1 | Gen2 | Allocated |
---|---|---|---|---|---|---|---|
CsvHelper_Read | 816.5 μs | 7.67 μs | 7.17 μs | 82.0313 | 81.0547 | 41.0156 | 1.2 MB |
RuQu_Read_Csv_StringReader | 406.1 μs | 1.83 μs | 1.53 μs | 62.5000 | 52.2461 | - | 1.13 MB |
RuQu_Read_Csv_String | 363.3 μs | 4.27 μs | 3.99 μs | 62.5000 | 52.2461 | - | 1.13 MB |
那么这样的表现,如何达到呢?我们就从最初我的思考开始
数据类型多样性
众所周知,我们可以将csv 这样的文本数据用各种各样的数据类型或者存储形式承载
比如:
csv
|--- string "a,b\r\n1,2\r\n3,4"
|--- char[]
|--- byte[]
|--- MemoryStream
|--- NetworkStream
|--- ....
那么我们是否能对这些类型进行封装抽象,然后以一份代码实现 csv 解析,并达到高性能呢?
数据类型归类
根据数据类型特点,我们可以归类为两种
-
无需编码转换的固定长度数组
- string
- char[]
-
需要编码转换的不明确长度的来源
- byte[]
- MemoryStream
- NetworkStream
那么我们以后者更高的复杂度抽象肯定能兼容前者
高性能基石
其次以 csv 解析实现考虑,字符对比,查找必然是首要考虑
现在这方面首选必然是 ReadOnlySpan<T>
其主要对于我们解析有两大优势
-
减少数据复制
ReadOnlySpan
实例通常用于引用数组的元素或数组的一部分。 但是,与数组不同, ReadOnlySpan 实例可以指向堆栈上托管的内存、本机内存或托管的内存。 其实现的部分代码如下
public readonly ref struct ReadOnlySpan<T> { /// <summary>A byref or a native ptr.</summary> internal readonly ref T _reference; /// <summary>The number of elements this ReadOnlySpan contains.</summary> private readonly int _length; /// <summary> /// Creates a new read-only span over the entirety of the target array. /// </summary> /// <param name="array">The target array.</param> /// <remarks>Returns default when <paramref name="array"/> is null.</remarks> [MethodImpl(MethodImplOptions.AggressiveInlining)] public ReadOnlySpan(T[]? array) { if (array == null) { this = default; return; // returns default } _reference = ref MemoryMarshal.GetArrayDataReference(array); _length = array.Length; } public override string ToString() { if (typeof(T) == typeof(char)) { return new string(new ReadOnlySpan<char>(ref Unsafe.As<T, char>(ref _reference), _length)); } return $"System.ReadOnlySpan<{typeof(T).Name}>[{_length}]"; } [MethodImpl(MethodImplOptions.AggressiveInlining)] public ReadOnlySpan<T> Slice(int start, int length) { #if TARGET_64BIT // See comment in Span<T>.Slice for how this works. if ((ulong)(uint)start + (ulong)(uint)length > (ulong)(uint)_length) ThrowHelper.ThrowArgumentOutOfRangeException(); #else if ((uint)start > (uint)_length || (uint)length > (uint)(_length - start)) ThrowHelper.ThrowArgumentOutOfRangeException(); #endif return new ReadOnlySpan<T>(ref Unsafe.Add(ref _reference, (nint)(uint)start /* force zero-extension */), length); }
从上述三个方法可以看出,其通过指针等操作,以 struct 极小代价能让我们共享访问数组数据或者片段
-
span 有 SIMD 优化
span 有着很多 SIMD优化
SIMD,即Single Instruction, Multiple Data,一条指令操作多个数据.是CPU基本指令集的扩展.主要用于提供fine grain parallelism,即小碎数据的并行操作.比如说图像处理,图像的数据常用的数据类型是RGB565, RGBA8888, YUV422等格式,这些格式的数据特点是一个像素点的一个分量总是用小于等于8bit的数据表示的.如果使用传统的处理器做计算,虽然处理器的寄存器是32位或是64位的,处理这些数据确只能用于他们的低8位,似乎有点浪费.如果把64位寄存器拆成8个8位寄存器就能同时完成8个操作,计算效率提升了8倍.
以下是 span 部分代码示例
internal static partial class SpanHelpers // .Char { public static int IndexOf(ref char searchSpace, int searchSpaceLength, ref char value, int valueLength) { Debug.Assert(searchSpaceLength >= 0); Debug.Assert(valueLength >= 0); if (valueLength == 0) return 0; // A zero-length sequence is always treated as "found" at the start of the search space. int valueTailLength = valueLength - 1; if (valueTailLength == 0) { // for single-char values use plain IndexOf return IndexOfChar(ref searchSpace, value, searchSpaceLength); } nint offset = 0; char valueHead = value; int searchSpaceMinusValueTailLength = searchSpaceLength - valueTailLength; if (Vector128.IsHardwareAccelerated && searchSpaceMinusValueTailLength >= Vector128<ushort>.Count) { goto SEARCH_TWO_CHARS; } ref byte valueTail = ref Unsafe.As<char, byte>(ref Unsafe.Add(ref value, 1)); int remainingSearchSpaceLength = searchSpaceMinusValueTailLength; while (remainingSearchSpaceLength > 0) { // Do a quick search for the first element of "value". // Using the non-packed variant as the input is short and would not benefit from the packed implementation. int relativeIndex = NonPackedIndexOfChar(ref Unsafe.Add(ref searchSpace, offset), valueHead, remainingSearchSpaceLength); if (relativeIndex < 0) break; remainingSearchSpaceLength -= relativeIndex; offset += relativeIndex; if (remainingSearchSpaceLength <= 0) break; // The unsearched portion is now shorter than the sequence we're looking for. So it can't be there. // Found the first element of "value". See if the tail matches. if (SequenceEqual( ref Unsafe.As<char, byte>(ref Unsafe.Add(ref searchSpace, offset + 1)), ref valueTail, (nuint)(uint)valueTailLength * 2)) { return (int)offset; // The tail matched. Return a successful find. } remainingSearchSpaceLength--; offset++; } return -1; // Based on http://0x80.pl/articles/simd-strfind.html#algorithm-1-generic-simd "Algorithm 1: Generic SIMD" by Wojciech Mula // Some details about the implementation can also be found in https://github.com/dotnet/runtime/pull/63285 SEARCH_TWO_CHARS: if (Vector512.IsHardwareAccelerated && searchSpaceMinusValueTailLength - Vector512<ushort>.Count >= 0) { // Find the last unique (which is not equal to ch1) character // the algorithm is fine if both are equal, just a little bit less efficient ushort ch2Val = Unsafe.Add(ref value, valueTailLength); nint ch1ch2Distance = (nint)(uint)valueTailLength; while (ch2Val == valueHead && ch1ch2Distance > 1) ch2Val = Unsafe.Add(ref value, --ch1ch2Distance); Vector512<ushort> ch1 = Vector512.Create((ushort)valueHead); Vector512<ushort> ch2 = Vector512.Create(ch2Val); nint searchSpaceMinusValueTailLengthAndVector = searchSpaceMinusValueTailLength - (nint)Vector512<ushort>.Count; do { // Make sure we don't go out of bounds Debug.Assert(offset + ch1ch2Distance + Vector512<ushort>.Count <= searchSpaceLength); Vector512<ushort> cmpCh2 = Vector512.Equals(ch2, Vector512.LoadUnsafe(ref searchSpace, (nuint)(offset + ch1ch2Distance))); Vector512<ushort> cmpCh1 = Vector512.Equals(ch1, Vector512.LoadUnsafe(ref searchSpace, (nuint)offset)); Vector512<byte> cmpAnd = (cmpCh1 & cmpCh2).AsByte(); // Early out: cmpAnd is all zeros if (cmpAnd != Vector512<byte>.Zero) { goto CANDIDATE_FOUND; } LOOP_FOOTER: offset += Vector512<ushort>.Count; if (offset == searchSpaceMinusValueTailLength) return -1; // Overlap with the current chunk for trailing elements if (offset > searchSpaceMinusValueTailLengthAndVector) offset = searchSpaceMinusValueTailLengthAndVector; continue;
接口抽象
接下来尝试抽象
public interface IReaderBuffer<T> : IDisposable where T : struct
{
public int ConsumedCount { get; }
public int Index { get; }
public ReadOnlySpan<T> Readed { get; }
public bool IsEOF { get; }
/// 标记已读, 以方便释放空间
public void Consume(int count);
/// 不同场景可以预览不同数组数据, 要求使用方法 就可以在预览未读取数据时将数据读取到数组中
public bool Peek(int count, out ReadOnlySpan<T> data);
public bool Peek(out T data);
public bool PeekByOffset(int offset, out T data);
/// 读取下一份数据
public bool ReadNextBuffer(int count);
}
/// 此接口用于表明 固定长度的类型, 以便于我们可以做性能优化
public interface IFixedReaderBuffer<T> : IReaderBuffer<T> where T : struct
{
}
String 对应buffer 实现
非常简单,基本就是string 的直接方法
public class StringReaderBuffer : IFixedReaderBuffer<char>
{
internal string _buffer;
internal int _offset;
internal int _consumedCount;
public StringReaderBuffer(string content)
{
_buffer = content;
}
public ReadOnlySpan<char> Readed
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
get => _buffer.AsSpan(_offset);
}
public bool IsEOF
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
get => _offset == _buffer.Length;
}
public int ConsumedCount
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
get => _consumedCount;
}
public int Index
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
get => _offset;
}
public void Consume(int count)
{
_offset += count;
_consumedCount += count;
}
public void Dispose()
{
}
public bool Peek(int count, out ReadOnlySpan<char> data)
{
if (_offset + count > _buffer.Length)
{
data = default;
return false;
}
data = _buffer.AsSpan(_offset, count);
return true;
}
public bool Peek(out char data)
{
if (_offset >= _buffer.Length)
{
data = default;
return false;
}
data = _buffer[_offset];
return true;
}
public bool PeekByOffset(int offset, out char data)
{
var o = _offset + offset;
if (o >= _buffer.Length)
{
data = default;
return false;
}
data = _buffer[o];
return true;
}
public bool ReadNextBuffer(int count) => false;
}
TextReader 对 buffer 实现
这里使用对 TextReader 封装,主要考虑到避免 字符编码 的复杂度
该实现参考自 System.Text.Json
内 ReadBufferState
不一定是最优方式(欢迎大家提供更优秀方式)
public class TextReaderBuffer : IReaderBuffer<char>
{
internal char[] _buffer;
internal int _offset;
internal int _count;
internal int _maxCount;
internal int _consumedCount;
private TextReader _reader;
private bool _isFinalBlock;
private bool _isReaded;
public ReadOnlySpan<char> Readed
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
get
{
if (!_isReaded)
{
ReadNextBuffer(1);
_isReaded = true;
}
return _buffer.AsSpan(_offset, _count - _offset);
}
}
public bool IsEOF
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
get => _isFinalBlock && _offset == _count;
}
public int ConsumedCount
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
get => _consumedCount;
}
public int Index
{
[MethodImpl(MethodImplOptions.AggressiveInlining)]
get => _offset;
}
public TextReaderBuffer(TextReader reader, int initialBufferSize)
{
if (initialBufferSize <= 0)
{
initialBufferSize = 256;
}
_buffer = ArrayPool<char>.Shared.Rent(initialBufferSize);
_consumedCount = _count = _offset = 0;
_reader = reader;
}
public void Consume(int count)
{
_offset += count;
_consumedCount += count;
}
/// 调整buffer 数组大小,以便能更有效多读取数据,减少数据迁移带来的数组操作
public void AdvanceBuffer(int count)
{
var remaining = _buffer.Length - _count + _offset;
if (remaining <= (_buffer.Length / 2) && _buffer.Length != int.MaxValue)
{
// We have less than half the buffer available, double the buffer size.
char[] oldBuffer = _buffer;
int oldMaxCount = _maxCount;
var newSize = (_buffer.Length < (int.MaxValue / 2)) ? _buffer.Length * 2 : int.MaxValue;
while (newSize < count)
{
newSize *= (newSize < (int.MaxValue / 2)) ? newSize * 2 : int.MaxValue;
}
char[] newBuffer = ArrayPool<char>.Shared.Rent(newSize);
// Copy the unprocessed data to the new buffer while shifting the processed bytes.
Buffer.BlockCopy(oldBuffer, _offset, newBuffer, 0, _count - _offset);
_buffer = newBuffer;
// Clear and return the old buffer
new Span<char>(oldBuffer, 0, oldMaxCount).Clear();
ArrayPool<char>.Shared.Return(oldBuffer);
_maxCount = _count;
_count -= _offset;
_offset = 0;
}
else if (_offset != 0)
{
_count -= _offset;
// Shift the processed bytes to the beginning of buffer to make more room.
Buffer.BlockCopy(_buffer, _offset, _buffer, 0, _count);
_offset = 0;
}
}
public void Dispose()
{
if (_buffer != null)
{
new Span<char>(_buffer, 0, _maxCount).Clear();
char[] toReturn = _buffer;
ArrayPool<char>.Shared.Return(toReturn);
_buffer = null!;
}
}
public bool Peek(int count, out ReadOnlySpan<char> data)
{
if (!_isReaded)
{
ReadNextBuffer(count);
_isReaded = true;
}
if (!_isFinalBlock && count + _offset > _count)
{
ReadNextBuffer(count);
}
if (_offset + count > _count)
{
data = default;
return false;
}
data = _buffer.AsSpan(_offset, count);
return true;
}
public bool Peek(out char data)
{
if (!_isReaded)
{
ReadNextBuffer(1);
_isReaded = true;
}
if (!_isFinalBlock && 1 + _offset > _count)
{
ReadNextBuffer(1);
}
if (_offset >= _count)
{
data = default;
return false;
}
data = _buffer[_offset];
return true;
}
public bool PeekByOffset(int offset, out char data)
{
var o = offset + 1;
if (!_isReaded)
{
ReadNextBuffer(o);
_isReaded = true;
}
if (!_isFinalBlock && o > _count)
{
ReadNextBuffer(o);
}
if (_offset >= _count)
{
data = default;
return false;
}
data = _buffer[o];
return true;
}
public bool ReadNextBuffer(int count)
{
if (!_isFinalBlock)
{
AdvanceBuffer(count);
do
{
int readCount = _reader.Read(_buffer.AsSpan(_count));
if (readCount == 0)
{
_isFinalBlock = true;
break;
}
_count += readCount;
}
while (_count < _buffer.Length);
if (_count > _maxCount)
{
_maxCount = _count;
}
return true;
}
return false;
}
}
RFC4180 csv标准 解析实现
PS: 不一定完全正确,毕竟没有完整测试过,仅供参考,哈哈
可以看到,由于要考虑不确定长度的抽象, 代码还是有一定复杂度的
public class CsvReader : TextDataReader<string[]>
{
public CsvReader(string content, char separater = ',', bool fristIsHeader = false) : base(content)
{
Separater = separater;
HasHeader = fristIsHeader;
}
public CsvReader(TextReader reader, int bufferSize = 256, char separater = ',', bool fristIsHeader = false) : base(reader, bufferSize)
{
Separater = separater;
HasHeader = fristIsHeader;
}
public char Separater { get; private set; } = ',';
public bool HasHeader { get; private set; }
public string[] Header { get; private set; }
public int FieldCount { get; private set; }
public override bool MoveNext()
{
string[] row;
if (HasHeader && Header == null)
{
if (!ProcessFirstRow(out row))
{
throw new ParseException("Missing header");
}
Header = row;
}
var r = FieldCount == 0 ? ProcessFirstRow(out row) : ProcessRow(out row);
Current = row;
return r;
}
private bool ProcessFirstRow(out string[]? row)
{
var r = new List<string>();
var hasValue = false;
while (ProcessField(out var f))
{
r.Add(f);
hasValue = true;
}
reader.IngoreCRLF();
row = r.ToArray();
FieldCount = row.Length;
return hasValue;
}
private bool TakeString(out string s)
{
if (reader.IsEOF)
{
throw new ParseException($"Expect some string end with '\"' at {reader.Index} but got eof");
}
int pos = 0;
int len;
ReadOnlySpan<char> remaining;
do
{
remaining = reader.Readed;
len = remaining.Length;
var charBufferSpan = remaining[pos..];
var i = charBufferSpan.IndexOf(Separater);
if (i >= 0)
{
if (reader.PeekByOffset(i + 1, out var n) && n == Separater)
{
pos += i + 2;
continue;
}
s = remaining[..i].ToString();
reader.Consume(i + 1);
return true;
}
else
{
pos += charBufferSpan.Length;
}
} while (reader.ReadNextBuffer(len));
s = reader.Readed.ToString();
return true;
}
private bool ProcessField(out string? f)
{
if (!reader.Peek(out var c) || reader.IngoreCRLF())
{
f = null;
return false;
}
if (c == Separater)
{
f = string.Empty;
reader.Consume(1);
return true;
}
else if (c is '"')
{
/// 读取可能转义的字段数据
reader.Consume(1);
return TakeString(out f);
}
else
{
/// 读取不包含转义的普通字段数据
var i = reader.IndexOfAny(Separater, '\r', '\n');
if (i == 0)
{
f = string.Empty;
}
else if (i > 0)
{
f = reader.Readed[..i].ToString();
reader.Consume(i);
}
else
{
f = reader.Readed.ToString();
reader.Consume(f.Length);
}
if (reader.Peek(out var cc) && cc == Separater)
{
reader.Consume(1);
}
return true;
}
}
private bool ProcessRow(out string[]? row)
{
row = new string[FieldCount];
for (int i = 0; i < FieldCount; i++)
{
if (!ProcessField(out var f))
{
reader.IngoreCRLF();
return false;
}
row[i] = f;
}
reader.IngoreCRLF();
return true;
}
}
至于其性能,就是最顶上的结果
达到了预期,不算浪费秃头掉发了
完整代码参考 https://github.com/fs7744/ruqu