R语言数据可视化包ggplot2画图之散点图的基本画法

来自:网络
时间:2023-05-18
阅读:
目录

前言

ggplot2的功能很强大,并因为其出色的画图能力而闻名,下面来介绍一下它的基本画图功能,本期介绍散点图的基本画法。

在ggplot2里,所有图片由6个基本要素组成:

1. 数据(Data)

2. 层次(Layers),包含两种元素:几何元素(Geometrics)与统计转换(Statistical transformations)。

几何元素指的是你想画的图形,如点,线,或多边形等。

统计转换指的是你想画的统计描述,如均数,标准差或可信区间等。

3. 刻度(Scales), 通常指几何元素(如点或者线)的大小,颜色和形状等。

4. 坐标系统(A coordinate system), 通常指的是x轴与y轴。

5. 多面化(Faceting),简单的说,就是可以将一个图片分成多个小的亚图片。

6. 主题 (Theme),此要素可以控制非数据与非统计部分的内容,如背景颜色,字体大小等。

下面以一个简单的例子引入:

library(ggplot2)#导入ggplot包
#使用mtcars数据做一个散点图
ggplot(data = mtcars,            # 要素1:数据
       aes(x = wt, y = mpg, 
       colour = factor(cyl))) +  # 要素3:刻度
       geom_point() +            # 要素2:几何元素(点)
       coord_cartesian() +       # 要素4:坐标轴
       facet_wrap(~ cyl) +       # 要素5:分面化
       theme_bw()                # 要素6:主题

R语言数据可视化包ggplot2画图之散点图的基本画法

 其中mtcars数据概况如下:

R语言数据可视化包ggplot2画图之散点图的基本画法

首先介绍第一类常用的图像类型:散点图 

#载入ggplot2
library(ggplot2)
#建立数据集,横坐标为1:100,纵坐标为服从标准正态分布的随机数
x <- seq(1,100,length=100) 
y <- rnorm(100,mean=0,sd=1)
data <- data.frame(x=x,y=y)
#作散点图
ggplot(data, aes(x=x, y=y)) + 
  geom_point()

R语言数据可视化包ggplot2画图之散点图的基本画法

给原始数据加上分类标签:

x <- seq(1,100,length=100) 
y <- rnorm(100,mean=0,sd=1)
z <- c(rep("A",30),rep("B",30),rep("C",40))
z <- sample(z,100)
data <- data.frame(x=x,y=y,z=z)

数据概况如下: 

R语言数据可视化包ggplot2画图之散点图的基本画法

按z列分类以不同的颜色在图中画出散点图:

ggplot(data, aes(x=x, y=y,color=z)) + 
  geom_point()

R语言数据可视化包ggplot2画图之散点图的基本画法

按z列分类以不同的形状在图中画出散点图:

ggplot(data, aes(x=x, y=y,shape=z)) + 
  geom_point()

R语言数据可视化包ggplot2画图之散点图的基本画法

多面化(将ABC三类分开展示):

ggplot(data, aes(x=x, y=y,color=z)) + 
  geom_point()+
  facet_wrap(~z)+
  theme(legend.position = "none")

R语言数据可视化包ggplot2画图之散点图的基本画法

 若不加

theme(legend.position = "none")

这一段代码,显示的图表如下:

R语言数据可视化包ggplot2画图之散点图的基本画法

可以看出不加这一段代码侧边栏显示图例,但显然这个图例是多余的,因此我们一般去掉 

 自定义颜色:

ggplot(data, aes(x=x, y=y,color=z)) + 
  geom_point()+
  facet_wrap(~z)+
  theme(legend.position = "none")+
  scale_colour_manual(values = c("purple", "red", "black")) 

R语言数据可视化包ggplot2画图之散点图的基本画法

 添加拟合曲线:

x <- seq(1,50,length=50) 
y <- rnorm(50,mean=0,sd=5)
z <- c(rep("A",20),rep("B",15),rep("C",15))
z <- sample(z,50)
data <- data.frame(x=x,y=2*x-y,z=z)#这里构造的数据集大致服从y=2x
ggplot(data, aes(x=x, y=y)) + 
  geom_point()+
  geom_smooth()#添加拟合曲线,默认的形式是局部回归,所以拟合出的线条是曲线。

R语言数据可视化包ggplot2画图之散点图的基本画法

因为geom_smooth()默认的形式是局部回归,所以拟合出的线条是曲线,阴影区域为置信区间。

这里也可以用其他模型拟合,如线型模型:

ggplot(data, aes(x=x, y=y)) + 
  geom_point()+
  geom_smooth(method = "lm", se = FALSE)

R语言数据可视化包ggplot2画图之散点图的基本画法

(se = FALSE:去除置信区间)

更换主题 :

ggplot(data, aes(x=x, y=y)) + 
  geom_point()+
  theme_test()

R语言数据可视化包ggplot2画图之散点图的基本画法

总结

返回顶部
顶部