目录
前言
OkHttp
是一套处理 HTTP
网络请求的依赖库,由 Square
公司设计研发并开源,目前可以在 Java
和 Kotlin
中使用。
对于 Android App
来说,OkHttp
现在几乎已经占据了所有的网络请求操作让,我们了解其内部实现原理可以更好地进行功能扩展、封装以及优化。
本文基于OkHttp 4.11.0
进行分析
OkHttp
的具体使用可以参考官网,这里不做具体的说明,本文主要从OkHttp
的使用入手,来具体分析OkHttp
的实现原理。
介绍
OkHttp是通过socket和okio进行交换数据的
val client = OkHttpClient() val request = Request.Builder().get().url("http://xxx").build() client.newCall(request).enqueue(object : Callback { override fun onFailure(call: Call, e: IOException) { } override fun onResponse(call: Call, response: Response) { } })
从上面我们可以看到几个OkHttp
重要的组成部分
- OkHttpClient:
Okhttp
用于请求的执行客户端 - Request: 通过Bulider设计模式,构建的一个请求对象
- Call: 是通过
client.newCall
生成的请求执行对象,当执行了execute
之后才会真正的开始执行网络请求 - Response: 是通过网络请求后,从服务器返回的信息都在里面。内含返回的状态码,以及代表响应消息正文的
ResponseBody
- interceptor 用户定义的拦截器,在重试拦截器之前执行
- retryAndFollowUpInterceptor 重试拦截器
- BridgeInterceptor 建立网络桥梁的拦截器,主要是为了给网络请求时候,添加各种各种必要参数。如Cookie,Content-type
- CacheInterceptor 缓存拦截器,主要是为了在网络请求时候,根据返回码处理缓存。
- ConnectInterceptor 连接拦截器,主要是为了从连接池子中查找可以复用的socket连接。
- networkInterceptors 用户定义的网络拦截器,在CallServerInterceptor(执行网络请求拦截器)之前运行。
- CallServerInterceptor 真正执行网络请求的逻辑。
执行流程
OkHttpClient
class Builder constructor() { //Okhttp 请求分发器,是整个OkhttpClient的执行核心 internal var dispatcher: Dispatcher = Dispatcher() //Okhttp连接池,不过会把任务委托给RealConnectionPool处理 internal var connectionPool: ConnectionPool = ConnectionPool() //用户定义的拦截器,在重试拦截器之前执行 internal val interceptors: MutableList<Interceptor> = mutableListOf() //用户定义的网络拦截器,在CallServerInterceptor(执行网络请求拦截器)之前运行。 internal val networkInterceptors: MutableList<Interceptor> = mutableListOf() //流程监听器 internal var eventListenerFactory: EventListener.Factory = EventListener.NONE.asFactory() //连接失败时是否重连 internal var retryOnConnectionFailure = true //服务器认证设置 internal var authenticator: Authenticator = Authenticator.NONE //是否重定向 internal var followRedirects = true //是否重定向到https internal var followSslRedirects = true //cookie持久化的设置 internal var cookieJar: CookieJar = CookieJar.NO_COOKIES //缓存设置 internal var cache: Cache? = null //DNS设置 internal var dns: Dns = Dns.SYSTEM //代理设置 internal var proxy: Proxy? = null internal var proxySelector: ProxySelector? = null internal var proxyAuthenticator: Authenticator = Authenticator.NONE //默认的socket连接池 internal var socketFactory: SocketFactory = SocketFactory.getDefault() //用于https的socket连接池 internal var sslSocketFactoryOrNull: SSLSocketFactory? = null //用于信任Https证书的对象 internal var x509TrustManagerOrNull: X509TrustManager? = null internal var connectionSpecs: List<ConnectionSpec> = DEFAULT_CONNECTION_SPECS //http协议集合 internal var protocols: List<Protocol> = DEFAULT_PROTOCOLS //https对host的检验 internal var hostnameVerifier: HostnameVerifier = OkHostnameVerifier internal var certificatePinner: CertificatePinner = CertificatePinner.DEFAULT internal var certificateChainCleaner: CertificateChainCleaner? = null //请求超时 internal var callTimeout = 0 //连接超时 internal var connectTimeout = 10_000 //读取超时 internal var readTimeout = 10_000 //写入超时 internal var writeTimeout = 10_000 internal var pingInterval = 0 internal var minWebSocketMessageToCompress = RealWebSocket.DEFAULT_MINIMUM_DEFLATE_SIZE internal var routeDatabase: RouteDatabase? = null }
client.newCall(request):
override fun newCall(request: Request): Call = RealCall(this, request, forWebSocket = false)
在这里生成一个RealCall对象,这里第三个参数是否为websocket,默认是false。 在拿到RealCall对象之后,这里有两种方式起发送网络请求:
- execute() : 这种方式很少用
- enqueue() : 这种方式是将每个请求放在队列中,按照顺序逐个去进行消费。
RealCall.enqueue()
override fun enqueue(responseCallback: Callback) { check(executed.compareAndSet(false, true)) { "Already Executed" } callStart() client.dispatcher.enqueue(AsyncCall(responseCallback)) } private fun callStart() { this.callStackTrace = Platform.get().getStackTraceForCloseable("response.body().close()") eventListener.callStart(this) }
这里主要做了一下几步
- 首先回调eventListener的callStart()方法,
- 然后把创建AsyncCall对象将responseCallback传进去。
- 最后Dispatcher的enqueue()方法.
Dispatcher.enqueue()
class Dispatcher constructor() { ...... //按运行顺序准备异步调用的队列 private val readyAsyncCalls = ArrayDeque<AsyncCall>() //正在运行的异步请求队列, 包含取消但是还未finish的AsyncCall private val runningAsyncCalls = ArrayDeque<AsyncCall>() //正在运行的同步请求队列, 包含取消但是还未finish的RealCall private val runningSyncCalls = ArrayDeque<RealCall>() ...... internal fun enqueue(call: AsyncCall) { synchronized(this) { readyAsyncCalls.add(call) if (!call.call.forWebSocket) { val existingCall = findExistingCallWithHost(call.host) if (existingCall != null) call.reuseCallsPerHostFrom(existingCall) } } promoteAndExecute() } private fun findExistingCallWithHost(host: String): AsyncCall? { for (existingCall in runningAsyncCalls) { if (existingCall.host == host) return existingCall } for (existingCall in readyAsyncCalls) { if (existingCall.host == host) return existingCall } return null }
- 首先将AsyncCall加入readyAsyncCalls队列中.
- 然后通过findExistingCallWithHost查找在runningAsyncCalls和readyAsyncCalls是否存在相同host的AsyncCall,如果存在则调用call.reuseCallsPerHostFrom()进行复用
- 最后调用 promoteAndExecute() 通过线程池执行队列中的AsyncCall对象
private fun promoteAndExecute(): Boolean { this.assertThreadDoesntHoldLock() val executableCalls = mutableListOf<AsyncCall>() //判断是否有请求正在执行 val isRunning: Boolean //加锁,保证线程安全 synchronized(this) { //遍历 readyAsyncCalls 队列 val i = readyAsyncCalls.iterator() while (i.hasNext()) { val asyncCall = i.next() //runningAsyncCalls的数量不能大于最大并发请求数 64 if (runningAsyncCalls.size >= this.maxRequests) break // Max capacity. //同一Host的最大数是5 if (asyncCall.callsPerHost.get() >= this.maxRequestsPerHost) continue // Host max capacity. //从readyAsyncCalls队列中移除并加入到executableCalls和runningAsyncCalls中 i.remove() asyncCall.callsPerHost.incrementAndGet() executableCalls.add(asyncCall) runningAsyncCalls.add(asyncCall) } isRunning = runningCallsCount() > 0 } //遍历executableCalls 执行asyncCall for (i in 0 until executableCalls.size) { val asyncCall = executableCalls[i] asyncCall.executeOn(executorService) } return isRunning }
在这里遍历readyAsyncCalls队列,判断runningAsyncCalls的数量是否大于最大并发请求数64, 判断同一Host的请求是否大于5,然后将AsyncCall从readyAsyncCalls队列中移除,并加入到executableCalls和runningAsyncCalls中,遍历executableCalls 执行asyncCall.
internal inner class AsyncCall( private val responseCallback: Callback ) : Runnable { ...... fun executeOn(executorService: ExecutorService) { client.dispatcher.assertThreadDoesntHoldLock() var success = false try { //执行AsyncCall 的run方法 executorService.execute(this) success = true } catch (e: RejectedExecutionException) { val ioException = InterruptedIOException("executor rejected") ioException.initCause(e) noMoreExchanges(ioException) responseCallback.onFailure(this@RealCall, ioException) } finally { if (!success) { client.dispatcher.finished(this) // This call is no longer running! } } } override fun run() { threadName("OkHttp ${redactedUrl()}") { var signalledCallback = false timeout.enter() try { //执行OkHttp的拦截器 获取response对象 val response = getResponseWithInterceptorChain() signalledCallback = true //通过该方法将response对象回调出去 responseCallback.onResponse(this@RealCall, response) } catch (e: IOException) { if (signalledCallback) { Platform.get().log("Callback failure for ${toLoggableString()}", Platform.INFO, e) } else { //遇到IO异常 回调失败方法 responseCallback.onFailure(this@RealCall, e) } } catch (t: Throwable) { //遇到其他异常 回调失败方法 cancel() if (!signalledCallback) { val canceledException = IOException("canceled due to $t") canceledException.addSuppressed(t) responseCallback.onFailure(this@RealCall, canceledException) } throw t } finally { client.dispatcher.finished(this) } } } }
这里可以看到AsyncCall就是一个Runable对象,线程执行就会调用该对象的run方法,而executeOn方法就是执行runable对象. 在run方法中主要执行了以下几步:
- 调用getResponseWithInterceptorChain()执行OkHttp拦截器,获取response对象
- 调用responseCallback的onResponse方法将Response对象回调出去
- 如果遇见IOException异常则调用responseCallback的onFailure方法将异常回调出去
- 如果遇到其他异常,调用cancel()方法取消请求,调用responseCallback的onFailure方法将异常回调出去
- 调用Dispatcher的finished方法结束执行
@Throws(IOException::class) internal fun getResponseWithInterceptorChain(): Response { // 拦截器集合 val interceptors = mutableListOf<Interceptor>() //添加用户自定义集合 interceptors += client.interceptors interceptors += RetryAndFollowUpInterceptor(client) interceptors += BridgeInterceptor(client.cookieJar) interceptors += CacheInterceptor(client.cache) interceptors += ConnectInterceptor //如果不是sockect 添加newtwork拦截器 if (!forWebSocket) { interceptors += client.networkInterceptors } interceptors += CallServerInterceptor(forWebSocket) //构建拦截器责任链 val chain = RealInterceptorChain( call = this, interceptors = interceptors, index = 0, exchange = null, request = originalRequest, connectTimeoutMillis = client.connectTimeoutMillis, readTimeoutMillis = client.readTimeoutMillis, writeTimeoutMillis = client.writeTimeoutMillis ) var calledNoMoreExchanges = false try { //执行拦截器责任链获取Response val response = chain.proceed(originalRequest) //如果取消了 则抛出异常 if (isCanceled()) { response.closeQuietly() throw IOException("Canceled") } return response } catch (e: IOException) { calledNoMoreExchanges = true throw noMoreExchanges(e) as Throwable } finally { if (!calledNoMoreExchanges) { noMoreExchanges(null) } } }
在这里主要执行了以下几步操作
- 首先构建一个可变interceptor集合,将所有拦截器添加进去,这里如果是websocket则不添加networkInterceptor拦截器,这个interceptor集合的添加顺序也就是OkHttp拦截器的执行顺序
- 构建一个RealInterceptorChain对象,将所有的拦截器包裹
- 调用RealInterceptorChain的proceed的方法,获得Response对象
简单的总结一下:这里才用了责任链设计模式,构建RealInterceptorChain对象,然后执行proceed方法获取response对象
fun interface Interceptor { //拦截方法 @Throws(IOException::class) fun intercept(chain: Chain): Response companion object { inline operator fun invoke(crossinline block: (chain: Chain) -> Response): Interceptor = Interceptor { block(it) } } interface Chain { //获取Request对象 fun request(): Request //处理请求获取Reponse @Throws(IOException::class) fun proceed(request: Request): Response ...... } }
class RealInterceptorChain( internal val call: RealCall, private val interceptors: List<Interceptor>, private val index: Int, internal val exchange: Exchange?, internal val request: Request, internal val connectTimeoutMillis: Int, internal val readTimeoutMillis: Int, internal val writeTimeoutMillis: Int ) : Interceptor.Chain { internal fun copy( index: Int = this.index, exchange: Exchange? = this.exchange, request: Request = this.request, connectTimeoutMillis: Int = this.connectTimeoutMillis, readTimeoutMillis: Int = this.readTimeoutMillis, writeTimeoutMillis: Int = this.writeTimeoutMillis ) = RealInterceptorChain(call, interceptors, index, exchange, request, connectTimeoutMillis, readTimeoutMillis, writeTimeoutMillis) ...... override fun call(): Call = call override fun request(): Request = request @Throws(IOException::class) override fun proceed(request: Request): Response { check(index < interceptors.size) ...... val next = copy(index = index + 1, request = request) val interceptor = interceptors[index] @Suppress("USELESS_ELVIS") val response = interceptor.intercept(next) ?: throw NullPointerException( "interceptor $interceptor returned null") ...... return response } }
这里看一看到copy()方法就是创建了一个RealInterceptorChain()对象,不过需要注意的是index在创建对象时是index = index + 1,这样就会执行index对应下标的拦截器,不断的调用下一个拦截器,直到有response对象返回,也就是chain.proceed(originalRequest)结束。
Interceptor
下面我们来具体分析一下拦截器
RetryAndFollowUpInterceptor
主要处理了如下几个方向的问题:
- 1.异常,或者协议重试(408客户端超时,权限问题,503服务暂时不处理,retry-after为0)
- 2.重定向
- 3.重试的次数不能超过20次。
@Throws(IOException::class) override fun intercept(chain: Interceptor.Chain): Response { val realChain = chain as RealInterceptorChain var request = chain.request val call = realChain.call var followUpCount = 0 var priorResponse: Response? = null var newExchangeFinder = true var recoveredFailures = listOf<IOException>() while (true) { //这里会新建一个ExchangeFinder,ConnectInterceptor会使用到 call.enterNetworkInterceptorExchange(request, newExchangeFinder) var response: Response var closeActiveExchange = true try { if (call.isCanceled()) { throw IOException("Canceled") } try { response = realChain.proceed(request) newExchangeFinder = true } catch (e: RouteException) { //尝试通过路由连接失败。该请求将不会被发送。 if (!recover(e.lastConnectException, call, request, requestSendStarted = false)) { throw e.firstConnectException.withSuppressed(recoveredFailures) } else { recoveredFailures += e.firstConnectException } newExchangeFinder = false continue } catch (e: IOException) { //尝试与服务器通信失败。该请求可能已发送。 if (!recover(e, call, request, requestSendStarted = e !is ConnectionShutdownException)) { throw e.withSuppressed(recoveredFailures) } else { recoveredFailures += e } newExchangeFinder = false continue } //尝试关联上一个response,注意:body是为null if (priorResponse != null) { response = response.newBuilder() .priorResponse(priorResponse.newBuilder() .body(null) .build()) .build() } val exchange = call.interceptorScopedExchange //会根据 responseCode 来判断,构建一个新的request并返回来重试或者重定向 val followUp = followUpRequest(response, exchange) if (followUp == null) { if (exchange != null && exchange.isDuplex) { call.timeoutEarlyExit() } closeActiveExchange = false return response } //如果请求体是一次性的,不需要再次重试 val followUpBody = followUp.body if (followUpBody != null && followUpBody.isOneShot()) { closeActiveExchange = false return response } response.body?.closeQuietly() //最大重试次数,不同的浏览器是不同的,比如:Chrome为21,Safari则是16 if (++followUpCount > MAX_FOLLOW_UPS) { throw ProtocolException("Too many follow-up requests: $followUpCount") } request = followUp priorResponse = response } finally { call.exitNetworkInterceptorExchange(closeActiveExchange) } } }
- 1.调用RealCall的enterNetworkInterceptorExchange方法实例化一个
ExchangeFinder
在RealCall对象中。 - 2.执行RealCall的proceed 方法,进入下一个拦截器,进行下一步的请求处理。
- 3.如果出现路由异常,则通过recover方法校验,当前的连接是否可以重试,不能重试则抛出异常,离开当前的循环。
private fun recover( e: IOException, call: RealCall, userRequest: Request, requestSendStarted: Boolean ): Boolean { //禁止重连 if (!client.retryOnConnectionFailure) return false // 不能再次发送请求体 if (requestSendStarted && requestIsOneShot(e, userRequest)) return false // 致命异常 if (!isRecoverable(e, requestSendStarted)) return false // 没有更多线路可以重连 if (!call.retryAfterFailure()) return false // 对于故障恢复,将相同的路由选择器与新连接一起使用 return true }
BridgeInterceptor
主要处理了如下几个问题:
- 主要将Content-Type、Content-Length、Host等一些数据添加到头部。
- 拿到数据之后对数据进行处理,判断是否为gzip,进行对数据数据解压。
@Throws(IOException::class) override fun intercept(chain: Interceptor.Chain): Response { //获取原始请求数据 val userRequest = chain.request() val requestBuilder = userRequest.newBuilder() //重新构建请求 添加一些必要的请求头信息 val body = userRequest.body if (body != null) { val contentType = body.contentType() if (contentType != null) { requestBuilder.header("Content-Type", contentType.toString()) } val contentLength = body.contentLength() if (contentLength != -1L) { requestBuilder.header("Content-Length", contentLength.toString()) requestBuilder.removeHeader("Transfer-Encoding") } else { requestBuilder.header("Transfer-Encoding", "chunked") requestBuilder.removeHeader("Content-Length") } } if (userRequest.header("Host") == null) { requestBuilder.header("Host", userRequest.url.toHostHeader()) } if (userRequest.header("Connection") == null) { requestBuilder.header("Connection", "Keep-Alive") } var transparentGzip = false if (userRequest.header("Accept-Encoding") == null && userRequest.header("Range") == null) { transparentGzip = true requestBuilder.header("Accept-Encoding", "gzip") } val cookies = cookieJar.loadForRequest(userRequest.url) if (cookies.isNotEmpty()) { requestBuilder.header("Cookie", cookieHeader(cookies)) } if (userRequest.header("User-Agent") == null) { requestBuilder.header("User-Agent", userAgent) } //执行下一个拦截器 val networkResponse = chain.proceed(requestBuilder.build()) cookieJar.receiveHeaders(userRequest.url, networkResponse.headers) //创建一个新的responseBuilder,目的是将原始请求数据构建到response中 val responseBuilder = networkResponse.newBuilder() .request(userRequest) if (transparentGzip && "gzip".equals(networkResponse.header("Content-Encoding"), ignoreCase = true) && networkResponse.promisesBody()) { val responseBody = networkResponse.body if (responseBody != null) { val gzipSource = GzipSource(responseBody.source()) val strippedHeaders = networkResponse.headers.newBuilder() .removeAll("Content-Encoding") .removeAll("Content-Length") .build() //修改response header信息,移除Content-Encoding,Content-Length信息 responseBuilder.headers(strippedHeaders) val contentType = networkResponse.header("Content-Type" //修改response body信息 responseBuilder.body(RealResponseBody(contentType, -1L, gzipSource.buffer())) } } return responseBuilder.build() }
- 设置头部的Content-Type.说明内容类型是什么
- 如果contentLength大于等于0,则设置头部的Content-Length(说明内容大小是多少);否则设置头部的Transfer-Encoding为chunked(说明传输编码为分块传输)
- 如果Host不存在,设置头部的Host(在Http 1.1之后出现,可以通过同一个URL访问到不同主机,从而实现服务器虚拟服务器的负载均衡。如果1.1之后不设置就会返回404)。
- 如果Connection不存在,设置头部的Connection为Keep-Alive(代表连接状态需要保持活跃)
- 如果Accept-Encoding且Range为空,则强制设置Accept-Encoding为gzip(说明请求将会以gzip方式压缩)
- 从CookieJar的缓存中取出cookie设置到头部的Cookie
- 如果User-Agent为空,则设置User-Agent到头部
CacheInterceptor
用户通过OkHttpClient.cache
来配置缓存,缓存拦截器通过CacheStrategy
来判断是使用网络还是缓存来构建response
。
@Throws(IOException::class) override fun intercept(chain: Interceptor.Chain): Response { val call = chain.call() //通过request从OkHttpClient.cache中获取缓存 val cacheCandidate = cache?.get(chain.request()) val now = System.currentTimeMillis() //创建缓存策略 val strategy = CacheStrategy.Factory(now, chain.request(), cacheCandidate).compute() //为空表示不使用网络,反之,则表示使用网络 val networkRequest = strategy.networkRequest //为空表示不使用缓存,反之,则表示使用缓存 val cacheResponse = strategy.cacheResponse //追踪网络与缓存的使用情况 cache?.trackResponse(strategy) val listener = (call as? RealCall)?.eventListener ?: EventListener.NONE //有缓存但不适用,关闭它 if (cacheCandidate != null && cacheResponse == null) { cacheCandidate.body?.closeQuietly() } //如果网络被禁止,但是缓存又是空的,构建一个code为504的response,并返回 if (networkRequest == null && cacheResponse == null) { return Response.Builder() .request(chain.request()) .protocol(Protocol.HTTP_1_1) .code(HTTP_GATEWAY_TIMEOUT) .message("Unsatisfiable Request (only-if-cached)") .body(EMPTY_RESPONSE) .sentRequestAtMillis(-1L) .receivedResponseAtMillis(System.currentTimeMillis()) .build().also { listener.satisfactionFailure(call, it) } } //如果我们禁用了网络不使用网络,且有缓存,直接根据缓存内容构建并返回response if (networkRequest == null) { return cacheResponse!!.newBuilder() .cacheResponse(stripBody(cacheResponse)) .build().also { listener.cacheHit(call, it) } } //为缓存添加监听 if (cacheResponse != null) { listener.cacheConditionalHit(call, cacheResponse) } else if (cache != null) { listener.cacheMiss(call) } var networkResponse: Response? = null try { //执行下一个拦截器 networkResponse = chain.proceed(networkRequest) } finally { //捕获I/O或其他异常,请求失败,networkResponse为空,且有缓存的时候,不暴露缓存内容 if (networkResponse == null && cacheCandidate != null) { //否则关闭缓存响应体 cacheCandidate.body?.closeQuietly() } } //如果有缓存 if (cacheResponse != null) { //且网络返回response code为304的时候,使用缓存内容新构建一个Response返回。 if (networkResponse?.code == HTTP_NOT_MODIFIED) { val response = cacheResponse.newBuilder() .headers(combine(cacheResponse.headers, networkResponse.headers)) .sentRequestAtMillis(networkResponse.sentRequestAtMillis) .receivedResponseAtMillis(networkResponse.receivedResponseAtMillis) .cacheResponse(stripBody(cacheResponse)) .networkResponse(stripBody(networkResponse)) .build() networkResponse.body!!.close() cache!!.trackConditionalCacheHit() cache.update(cacheResponse, response) return response.also { listener.cacheHit(call, it) } } else { //否则关闭缓存响应体 cacheResponse.body?.closeQuietly() } } //构建网络请求的response val response = networkResponse!!.newBuilder() .cacheResponse(stripBody(cacheResponse)) .networkResponse(stripBody(networkResponse)) .build() //如果cache不为null,即用户在OkHttpClient中配置了缓存,则将上一步新构建的网络请求response存到cache中 if (cache != null) { //根据response的code,header以及CacheControl.noStore来判断是否可以缓存 if (response.promisesBody() && CacheStrategy.isCacheable(response, networkRequest)) { // 将该response存入缓存 val cacheRequest = cache.put(response) return cacheWritingResponse(cacheRequest, response).also { if (cacheResponse != null) { listener.cacheMiss(call) } } } //根据请求方法来判断缓存是否有效,只对Get请求进行缓存,其它方法的请求则移除 if (HttpMethod.invalidatesCache(networkRequest.method)) { try { //缓存无效,将该请求缓存从client缓存配置中移除 cache.remove(networkRequest) } catch (_: IOException) { } } } return response }
网络请求前:
- 首先根据request从OkHttpClient.cache中获取缓存,通过
CacheStrategy
获取本次请求的请求体及缓存的响应体。 - 如果 请求体
networkRequest
和响应体cacheResponse
都为空的话,则返回错误码为 504 - 如果 请求体
networkRequest
为空 响应体cacheResponse
不为空的话,则将该响应体返回 - 如果请求体
networkRequest
不为空的话,则进入下一个拦截器。
网络请求后:
- 如果当前
cacheResponse
不为空,且networkResponse
状态码为304, 则代表数据没有变化,那么就会根据cacheResponse
构建一个新的response
,根据当前时间更新到缓存当中,并返回到上一拦截器中 - 如果
networkResponse
状态码不为304,则判断是否进行缓存,最后返回到上一拦截器中
从LruCache中获取缓存
val cacheCandidate = cache?.get(chain.request())
internal fun get(request: Request): Response? { val key = key(request.url) val snapshot: DiskLruCache.Snapshot = try { cache[key] ?: return null } catch (_: IOException) { return null // Give up because the cache cannot be read. } val entry: Entry = try { Entry(snapshot.getSource(ENTRY_METADATA)) } catch (_: IOException) { snapshot.closeQuietly() return null } val response = entry.response(snapshot) if (!entry.matches(request, response)) { response.body?.closeQuietly() return null } return response }
@JvmStatic fun key(url: HttpUrl): String = url.toString().encodeUtf8().md5().hex()
- 首先将url转化为urf-8,并且通过md5拿到摘要,再调用hex获取16进制的字符串,该字符串就是LruCache的key;
- 通过key获取到
DiskLruCache.Snapshot
对象(这里在DiskLruCache
中重写了get方法),根据DiskLruCache.Snapshot
对象获取到okio 的source。
DiskLruCache:
@Synchronized @Throws(IOException::class) operator fun get(key: String): Snapshot? { initialize() checkNotClosed() validateKey(key) val entry = lruEntries[key] ?: return null val snapshot = entry.snapshot() ?: return null redundantOpCount++ journalWriter!!.writeUtf8(READ) .writeByte(' '.toInt()) .writeUtf8(key) .writeByte('\n'.toInt()) if (journalRebuildRequired()) { cleanupQueue.schedule(cleanupTask) } return snapshot }
- 最后将数据转化为响应体
再来看看那些响应体需要缓存:
这里是网络请求回来,判断是否需要缓存的处理
if (cache != null) { if (response.promisesBody() && CacheStrategy.isCacheable(response, networkRequest)) { val cacheRequest = cache.put(response) return cacheWritingResponse(cacheRequest, response).also { if (cacheResponse != null) { listener.cacheMiss(call) } } } if (HttpMethod.invalidatesCache(networkRequest.method)) { try { cache.remove(networkRequest) } catch (_: IOException) { } } }
- 首先根据cache对象是否为空,决定是否进入缓存判断
response.promisesBody()
判断响应体是否有正文,CacheStrategy.isCacheable(response, networkRequest)
这里是判断哪些状态码需要缓存- 这里
HttpMethod.invalidatesCache(networkRequest.method)
判断哪些请求方式是否为POST
、PATCH
、PUT
、DELETE
、MOVE
,如果为true的话则移除缓存。
fun isCacheable(response: Response, request: Request): Boolean { when (response.code) { HTTP_OK, HTTP_NOT_AUTHORITATIVE, HTTP_NO_CONTENT, HTTP_MULT_CHOICE, HTTP_MOVED_PERM, HTTP_NOT_FOUND, HTTP_BAD_METHOD, HTTP_GONE, HTTP_REQ_TOO_LONG, HTTP_NOT_IMPLEMENTED, StatusLine.HTTP_PERM_REDIRECT -> { } HTTP_MOVED_TEMP, StatusLine.HTTP_TEMP_REDIRECT -> { if (response.header("Expires") == null && response.cacheControl.maxAgeSeconds == -1 && !response.cacheControl.isPublic && !response.cacheControl.isPrivate) { return false } } else -> { return false } } return !response.cacheControl.noStore && !request.cacheControl.noStore }
如果状态码为200
、203
、204
、301
、404
、405
、410
、414
、501
、308
都可以缓存,其他则返回false
不进行缓存
以上就是Android开发OkHttp执行流程源码分析的详细内容,更多关于Android OkHttp执行流程的资料请关注其它相关文章!